Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(5)2022 05 16.
Article in English | MEDLINE | ID: covidwho-1855825

ABSTRACT

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Spike Glycoprotein, Coronavirus , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chickens , Cricetinae , Disease Models, Animal , Ferrets , Mice , Mice, Inbred BALB C , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology
2.
Vaccines (Basel) ; 10(1)2022 Jan 09.
Article in English | MEDLINE | ID: covidwho-1614041

ABSTRACT

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL